A Parametric Empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction
نویسندگان
چکیده
We describe an asymmetric approach to fMRI and MEG/EEG fusion in which fMRI data are treated as empirical priors on electromagnetic sources, such that their influence depends on the MEG/EEG data, by virtue of maximizing the model evidence. This is important if the causes of the MEG/EEG signals differ from those of the fMRI signal. Furthermore, each suprathreshold fMRI cluster is treated as a separate prior, which is important if fMRI data reflect neural activity arising at different times within the EEG/MEG data. We present methodological considerations when mapping from a 3D fMRI Statistical Parametric Map to a 2D cortical surface and thence to the covariance components used within our Parametric Empirical Bayesian framework. Our previous introduction of a canonical (inverse-normalized) cortical mesh also allows deployment of fMRI priors that live in a template space; for example, from a group analysis of different individuals. We evaluate the ensuing scheme with MEG and EEG data recorded simultaneously from 12 participants, using the same face-processing paradigm under which independent fMRI data were obtained. Because the fMRI priors become part of the generative model, we use the model evidence to compare (i) multiple versus single, (ii) valid versus invalid, (iii) binary versus continuous, and (iv) variance versus covariance fMRI priors. For these data, multiple, valid, binary, and variance fMRI priors proved best for a standard Minimum Norm inversion. Interestingly, however, inversion using Multiple Sparse Priors benefited little from additional fMRI priors, suggesting that they already provide a sufficiently flexible generative model.
منابع مشابه
Multimodal integration: constraining MEG localization with EEG and fMRI
I review recent methodological developments for multimodal integration of MEG, EEG and fMRI data within a Parametric Empirical Bayesian framework [1]. More specifically, I describe two ways to incorporate multimodal data during distributed MEG/EEG source reconstruction under linear Gaussian assumptions: 1) the simultaneous inversion of EEG and MEG data using a common generative model [2], and 2...
متن کاملAlgorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal like...
متن کاملA Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration
We review recent methodological developments within a parametric empirical Bayesian (PEB) framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG) and magnetoencephalographic (MEG) data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors) on this inverse problem, such as those derived ...
متن کاملMEG source localization under multiple constraints: an extended Bayesian framework.
To use Electroencephalography (EEG) and Magnetoencephalography (MEG) as functional brain 3D imaging techniques, identifiable distributed source models are required. The reconstruction of EEG/MEG sources rests on inverting these models and is ill-posed because the solution does not depend continuously on the data and there is no unique solution in the absence of prior information or constraints....
متن کاملA technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study.
fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 31 شماره
صفحات -
تاریخ انتشار 2010